22 research outputs found

    Modélisation et simulation dans le contexte du trafic routier

    Get PDF
    National audienc

    From traffic and pedestrian follow-the-leader models with reaction time to first order convection-diffusion flow models

    Full text link
    In this work, we derive first order continuum traffic flow models from a microscopic delayed follow-the-leader model. Those are applicable in the context of vehicular traffic flow as well as pedestrian traffic flow. The microscopic model is based on an optimal velocity function and a reaction time parameter. The corresponding macroscopic formulations in Eulerian or Lagrangian coordinates result in first order convection-diffusion equations. More precisely, the convection is described by the optimal velocity while the diffusion term depends on the reaction time. A linear stability analysis for homogeneous solutions of both continuous and discrete models are provided. The conditions match the ones of the car-following model for specific values of the space discretization. The behavior of the novel model is illustrated thanks to numerical simulations. Transitions to collision-free self-sustained stop-and-go dynamics are obtained if the reaction time is sufficiently large. The results show that the dynamics of the microscopic model can be well captured by the macroscopic equations. For non--zero reaction times we observe a scattered fundamental diagram. The scattering width is compared to real pedestrian and road traffic data

    Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d'Hamilton-Jacobi

    Get PDF
    This work focuses on modeling and simulation of traffic flows on a network. Modeling road traffic on a homogeneous section takes its roots in the middle of XXth century and it has generated a substantial literature since then. However, taking into account discontinuities of the network such as junctions, has attracted the attention of the scientific circle more recently. However, these discontinuities are the major sources of traffic congestion, recurring or not, that basically degrades the level of service of road infrastructure. This work therefore aims to provide a unique perspective on this issue, while focusing on scale problems and more precisely on microscopic-macroscopic passage in existing models. The first part of this thesis is devoted to the relationship between microscopic car-following models and macroscopic continuous flow models. The asymptotic passage is based on a homogenization technique for Hamilton-Jacobi equations. In a second part, we focus on the modeling and simulation of vehicular traffic flow through a junction. The considered macroscopic model is built on Hamilton-Jacobi equations as well. Finally, the third part focuses on finding analytical or semi-analytical solutions, through representation formulas aiming to solve Hamilton-Jacobi equations under adequate assumptions. In this thesis, we are also interested in a generic class of second order macroscopic traffic flow models, the so-called GSOM modelsCe travail porte sur la modélisation et la simulation du trafic routier sur un réseau. Modéliser le trafic sur une section homogène (c'est-à-dire sans entrée, ni sortie) trouve ses racines au milieu du XXème siècle et a généré une importante littérature depuis. Cependant, la prise en compte des discontinuités des réseaux comme les jonctions, n'a attiré l'attention du cercle scientifique que bien plus récemment. Pourtant, ces discontinuités sont les sources majeures des congestions, récurrentes ou non, qui dégradent la qualité de service des infrastructures. Ce travail se propose donc d'apporter un éclairage particulier sur cette question, tout en s'intéressant aux problèmes d'échelle et plus particulièrement au passage microscopique-macroscopique dans les modèles existants. La première partie de cette thèse est consacrée au lien existant entre les modèles de poursuite microscopiques et les modèles d'écoulement macroscopiques. Le passage asymptotique est assuré par une technique d'homogénéisation pour les équations d'Hamilton-Jacobi. Dans une deuxième partie, nous nous intéressons à la modélisation et à la simulation des flux de véhicules au travers d'une jonction. Le modèle macroscopique considéré est bâti autour des équations d'Hamilton-Jacobi. La troisième partie enfin, se concentre sur la recherche de solutions analytiques ou semi-analytiques, grâce à l'utilisation de formules de représentation permettant de résoudre les équations d'Hamilton-Jacobi sous de bonnes hypothèses. Nous nous intéressons également dans cette thèse, à la classe générique des modèles macroscopiques de trafic de second ordre, dits modèles GSO

    Numerical approach for Hamilton-Jacobi equations on a network: application to traffic

    Get PDF
    Parallel sessionInternational audience1 Introduction 2 Numerical scheme 3 Traffic interpretation 4 Numerical simulation 5 Recent development

    Lagrangian GSOM traffic flow models on junctions

    Get PDF
    International audienceThis paper is concerned with the macroscopic modeling and simulation of traffic flow on junctions. More precisely, we deal with a generic class of second order models, known in the literature as the GSOM family. While classical approaches focus on the Eulerian point-of-view, here we recast the model using its Lagrangian coordinates and we treat the junction as a specific discontinuity in Lagrangian framework. We propose a complete numerical methodology based on a finite difference scheme for solving such a model and we provide a numerical example

    A convergent scheme for Hamilton-Jacobi equations on a junction: application to traffic

    Get PDF
    30 pagesInternational audienceIn this paper, we consider first order Hamilton-Jacobi (HJ) equations posed on a "junction", that is to say the union of a finite number of half-lines with a unique common point. For this continuous HJ problem, we propose a finite difference scheme and prove two main results. As a first result, we show bounds on the discrete gradient and time derivative of the numerical solution. Our second result is the convergence (for a subsequence) of the numerical solution towards a viscosity solution of the continuous HJ problem, as the mesh size goes to zero. When the solution of the continuous HJ problem is unique, we recover the full convergence of the numerical solution. We apply this scheme to compute the densities of cars for a traffic model. We recover the well-known Godunov scheme outside the junction point and we give a numerical illustration

    Mesoscopic multiclass traffic flow modeling on multi-lane sections

    Get PDF
    International audienceThe aim of this paper is to propose a new event-based mesoscopic approach to model multi-class traffic flow on multi-lane road sections. The mesoscopic model was first proposed by Leclercq and Bécarie (2012) and turns out to be equivalent to the resolution of the seminal LWR model in lagrangian-space coordinates n − x. It is fully consistent at a macroscopic scale with the LWR model while keeping track of individual vehicles. Our model is built on Hamilton-Jacobi equations which have been proven to provide an efficient framework in traffic flow modeling for exact numerical methods at a low computational cost. The paper revisits the multi-class problem with a continuous moving bottleneck approach (instead of a sequential one), introducing a capacity drop parameter for multi-lane sections. It also overhauls the Daganzo diverge model with a relaxed FIFO assumption

    The impact of source terms in the variational representation of traffic flow

    Get PDF
    International audienceThis paper revisits the variational theory of traffic flow, now under the presence of continuum lateral inflows and outflows to the freeway say Eulerian source terms. It is found that a VT solution can be easily exhibited only in Eulerian coordinates when source terms are exogenous meaning that they only depend on time and space, but not when they are a function of traffic conditions, as per a merge model. In discrete time, however, these dependencies become exogenous, which allowed us to propose improved numerical solution methods. In Lagrangian and vehicle number-space coordinates, VT solutions may not exist even if source terms are exogenous
    corecore